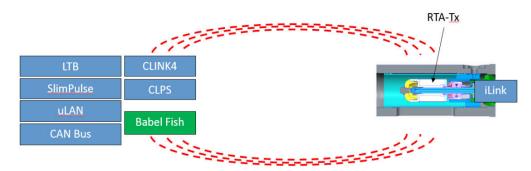
Extreme Equipment Sales & Rentals

PowerDrive Real-Time Data Points Overview & Prioritization Revision 3.0


Date: August 02, 2021 Applicability: PowerDrive Issued By: Rodney Ewing, PowerDrive Applications Engineer Approved By: David Smith, Operations Manager

BACKGROUND INFORMATION

With the introduction of PowerDrive version 4.1 firmware and the recent successful field trails of Babel Fish in North America Lane, it is becoming more desirable to have real-time data from the PowerDrive tool in order to help improve operations. While the 4.1 firmware increases the number of available downlinks, it also uses multi-page operation. Due to the risk of downlinking on the wrong page, it is not recommended to run the multi-page without real-time feedback from the tool. The goals of this Technical Bulletin are to provide a brief overview of E-mag communications and to serve as a guide for the D-Points available as well as give a brief description as to how they can be useful. The D-points are grouped according to need/service and presented in order of priority to help optimize frames when space is limited.

E-MAG COMMUNICATIONS:

The PowerDrive tool communicates to the rest of the BHA via an E-Mag link. The tools are fitted with either an iLink or ShortHop board. This board connects to the PowerDrive antenna and sends a uni-direction data stream to a receiver.

Choosing a modulation type depends on the capabilities of the receiver. The ShortHop uses a FSK signal at 575 Hz and 595 Hz with a baud rate of 10 bit/s. The iLink uses a BPSK signal at 586 Hz with a baud rat of 12 bit/sec. The iLink modulation provides a higher signal-to-noise ration and can transmit over longer distances.

E-Mag Receiver	Modulation	Communications Protocol	Theoretical Range (ft)
Babel Fish 475/675	iLink	Standard, Extended, Flexible	18+*
XHOP	Shorthop	Standard, Extended, Flexible	3 to 6

* depends on many environmental factors

In addition to the type of modulation, the tool can also be configured to use three types of data communication to a receiver.

- Standard → CU only sends standard data points. This is Legacy and only required for the PDCU-BB tool.
- Extended → Enables more data to be sent which includes both the standard and extended data points. This is the second option.
- Flexible → Optimizes the E-Mag bandwidth and enables the PowerDrive to send any future data point in its real-time catalog without a change of firmware on the receiver side. This is the preferred option, if this is available.

RECOMMENDED DATA POINTS:

The following recommended data points should be used in most applications. They are listed in order of priority. If there is not enough room for all of them, start removing from the bottom up.

	Pow	erDrive	e Data P	oints		P	rotoc	ol		
Priority	Name	Size (bits)	Scale	Offset	Unit	Std	Ext	Flex	Meaning	Comments
1	RTSTAT	12	1	0					PD Real-Time Status Word	Can be decoded using the Downlink Timing Sheet. Gives you current tool mode, ROP index, health flags, FDL bit period, steering mode (MTF/GTF), etc.
2	SHKRSK	2	1	0	-				Shock Risk/Severity	See shock risk definition chart on page 6. The definitions were modified from 3.2 firmware onwards to factor in vibration (rms) too.
3	INCL	12	0.05	0	deg				Inclination (continuous survey)	Continuous PD Inc
4	AZIM	12	0.1	0	deg				Azimuth (continuous survey)	Continuous PD Azi
5	POSSUM	7	2	-100	%				Integral Control Term, PosSum	PWM demand on torquers used as an indicator of jamming or improper tool functionality. Use to troubleshoot when PROPEFF is below PRDS. Negative values reflect lower torquer load, positve reflects upper torquer load30 to -70 is the normal range.
6	DLNK	9	1	0	-				Last Received Fast Downlink Cmd be decoded using the Downlink Timing Sheet	
7	TF	6	6	0	deg				Measured TF (MTF or GTF) - low res	Effective TF being held. Should match TFDS unless seeing high shocks or possible tool issue.
8	TFDS	6	6	0	deg				Desired Toolface	Toolface the PD is trying to hold. Used in addition to DLNK/STEER for steering confirmation. Should be placed immediately before PRDS.
9	PROPEFF	4	10	0	%				Effective Steering Proportion	Percentage of drill cycle the PD is actually steering. Should match PRDS unless seeing high shocks or possible tool issue.
10	PRDS	4	10	0	%				Desired Proportion	Percentage of drill cycle the PD is attempting to steer. Used in addition to DLNK/STEER for steering confirmation. Should be placed immediately after TFDS.
11	IH_TRGT	12	0.05	0	deg				Inclination Target	Shows the inclination the PD is trying to hold in IH / HIA.
12	AZI_TRGT	12	0.1	0	deg				Azimuth Target	Shows the azimuth the PD is trying to hold in HIA.
13	UTRPM	6	100	0	rpm				Upper Torquer RPM	Useful for detecting jamming and washouts. Can also be used to estimate flow rate through tool.
14	LTRPM	6	100	0	rpm				Lower Torquer RPM	Useful for detecting jamming.

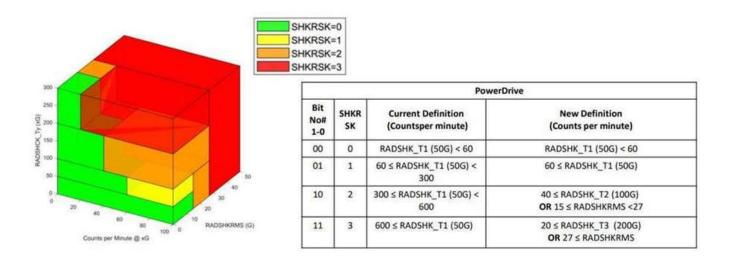
OPTIONAL DATA POINTS:

The following D-Points may prove u	seful in certain situations and	d can be included if desired.
····· ································		

	Pow	/erDrive	e Data P	oints		P	rotoc	ol		
Priority	Name	Size (bits)	Scale	Offset	Unit	Std	Ext	Flex	Meaning	Comments
Opt	GT	6	0.5	984	mG				Total G	
Opt	BT	11	48	0	nT				Total B	
Opt	TFHI	12	0.1	0	deg				Measured TF (MTF or GTF) - high res	Effective TF being held. Should match TFDS unless high shocks or possible tool issue.
Opt	STKSLP	4	1	0	-				SnS amplitude & frequency severity	Combined stick-slip amplitude and frequency levels 0-3.
Opt	STEER	8	1	0	-				Steer D-point	Use for dowlink confirmation. Should be decoded using the Downlink Timing Sheet.
Opt	IH_TURN	6	4	-100	%				Inclination Hold Turn Setting	Displays current % of IH turn setting.
Opt	RTTOTSHK	2	1	0	-				RT Total Shock	Real-time total shock; 0 = 0 to 50K shks above 50G, 1 = 50K to 100K, 2 = 100K to 200K, 3 = >200K
Opt	PCNTSTCK	2	1	0	-				Percent Stuck	Pecentage of time that the collar RPM is lower than 5 RPM; 0 = none, 1 = 0% to 25%, 2 = 25% to 50%, 3 = > 50% of time
Opt	CCRPM	8	2	0	rpm				Control Collar RPM	Useful if running Vortex and motor rev/gallon is questionable.
Opt	SS_AMPL	7	4	0	rpm				Stick-Slip Amplitude	Stick-slip peak amplitude relative to average collar RPM; 0 = amplitude <= 25%, 1 = 25% < Amp <= 50%, 2 = 50% < Amp <= 100%, 3 = Amp > 100%
Opt	SHK_AMPL	6	80	0	m/s2				Shock Amplitude	Will give the peak shock in any direction (axial or radial). The benefit of having SHK_Ampl together w/ SHKRSK is that the new SHKRSK definitions include rms so could start to trigger level 2-3's if your're seeing high vibration too rather than just peak shocks. Having the SHK_Ampl will help distinguish if any high SHKRSK values are being caused by high peak values if SHK_Amp also peaks at the same time or if not it could be high levels of vibration.
Opt	RTSTAT2	12	1	0	-				PD Real-Time Status Word #2	Useful in utility frame so that PD survey quality can be confirmed before engaging HIA; 0 = Good survey, 8 = bad survey based on GTOT. Decoded using the Downlink Timing Sheet.
Opt	RTSTAT3	6	1	0	-				PD Real-Time Status Word #3	
Opt	RTSTAT4	6	1	0	-				PD Real-Time Status Word #4	
Opt	PDTEMP	8	1	-40	deg				PDCU Temp	Useful if high temperatures are expected (>130 deg C).
Opt	LatShkPeak	6	5	25	Gs				Lateral Shock Peak	New shk data point for flexible protocol; Lateral Shk Pk, range 25 - 345
Opt	LatVib	6	1	5	Grms				Lateral Vibration	New shk data point for flexible protocol; Lateral Vibration, range 5 – 67
Opt	AxiShkPeak	5	1	3	Gs				Axial Shock Peak	New shk data point for flexible protocol; Axial Shk Peak, range 3 - 33
Opt	AxIVib	5	1	3	Grms				Axial Vibration	New shk data point for flexible protocol; Axial Vibration, range 3 - 33

GAMMA RAY DATA POINTS:

There are 2 options for average and quadrant Gamma Ray, but extended D-points are the usual default configuration. There is also a new Gamma 8 D-point if both space in the frame is available and running flexible D-points.


PowerDrive Data Points		P	rotoc	ol					
Name	Size (bits)	Scale	Offset	Unit	Std	Ext	Flex	Meaning	Comments
GRAV	7	1	0	cps				Gamma Ray Average Conventional data point often used due to smaller size values are expected to exeed 256 cps.	
GRUP	7	1	0	cps				Gamma Ray Up Conventional data point often used due to smaller size un values are expected to exeed 256 cps.	
GRLF	7	1	0	cps				Gamma Ray Left	Conventional data point often used due to smaller size unless gamma values are expected to exeed 256 cps.
GRDN	7	1	0	cps				Gamma Ray Down	Conventional data point often used due to smaller size unless gamma values are expected to exeed 256 cps.
GRRT	7	1	0	cps				Gamma Ray Right Conventional data point often used due to smaller size un values are expected to exeed 256 cps.	
GRAV_ext	9	1	0	cps				Extended Gamma Ray Average Extented data point which can measure gamma values up to which necessary in some shale formations in NAL.	
GRUP_ext	9	1	0	cps				Extended Gamma Ray Up	Extented data point which can measure gamma values up to 1000 cps which necessary in some shale formations in NAL.
GRLF_ext	9	1	0	cps				Extended Gamma Ray Left	Extented data point which can measure gamma values up to 1000 cps which necessary in some shale formations in NAL.
GRDN_ext	9	1	0	cps				Extended Gamma Ray Down Extended Gamma Ray Down Which necessary in some shale formations in NAL	
GRRT_ext	9	1	0	cps				Extended Gamma Ray Right	Extented data point which can measure gamma values up to 1000 cps which necessary in some shale formations in NAL.
GAMMA8	24	1	0	1.4				8 Bin Gamma Scan Line	New Gamma data point for flexible protocol

Bit no.	Name	Comment	
8	Precursor correlation	0 = Correlation < T + 0.05 1 = Correlation >= T + 0.05	
7	Command correlation	0 = Correlation < T + 0.05 1 = Correlation >= T + 0.05	
6	Downlink source	0 = Flow 1 = Collar	
5	Precursor	Received precursor number: 0 = Precursor 1 1 = Precursor 2	
4 to 0	Command	Received command number (commands 0 to 31)	

Table A-3: Definition of DLNK

Table A-4: Definition of RTSTAT

Bit no.	Name	Comment
11 to 9	Tool mode	Tool current operating mode:
		000 = Manual TF 001 = PowerV 010 = IH 100 = Auto TFDS 110 = HIA
8	ROP index	ROP index used for IH and HIA:
		0 = ROP index 1 (20 to 100 ft/hr) 1 = ROP index 2 (80 to 400 ft/hr)
7	Valve seized	This is set when the control unit is not rotating with respect to the control collar
6	Servo saturated	PosSum exceeds normal range. This is set when the control unit is at + or – 100 % PWM demand, and is unable to keep up with rotational requirements. It indicates that the control unit is not steering properly
5 to 4	Fast downlink bit period	01 = 18 seconds 10 = 36 seconds
3	Bxy low	Magnitude of BxBy too small (less than 15 000 nT) for roll estimation and CRPM downlink
2	High temperature	Temperature > 140 degC
1	Steering mode	0 = Gravity 1 = Magnetic
0	Stick-slip	Tool has detected stick-slip above the theshold:
		(Amplitude + Frequency) > 3 (Amplitudue) = 3 (Frequency) = 3

Table A-6: Definition of STKSLP

Bit no.	Name	Comme	Comment (bit order 3,2 or 1,0)			
3 to 2	SS_AMPL	Stick-slip peak amplitude ¹ relative to average colla RPM				
		00 = 0	Amplitude <= 25%			
		01 = 1	25% < Amplitude <= 50%			
		10 = 2	50% < Amplitude <= 100%			
		11 = 3	Amplitude > 100%			
1 to 0	SS_FREQ	Stick-slip	slip frequency ² in cycles per minute (cpm)			
		00 = 0	cpm <= 7.5			
		01 = 1	7.5 < cpm <= 30			
		10 = 2	30 < cpm <= 60			
		11 = 3	cpm > 60			

¹ The amplitude is derived from calculations of collar speed in rpm, using the formula: Amplitude = ($\omega_{c max} - \omega_{c min}$) / (2 * $\omega_{c average}$) over a survey interval.

² The frequency is the average number of stick-slip cycles where the collar speed exceeds a window of 25% above or below the average collar speed

Bit no.	Name	Comment	
7	Steer mode	0 = Magnetic 1 = Gravity (inverse of RTSTAT bit 1)	
6 to 5	Precursor	Received precursor number:	
		01 = Precursor 1 10 = Precursor 2	
4 to 0	Command	Received command number (commands 0 to 31)	

Table A-8: Definition of STEER

Table A-9: Definition of RTTOTSHK

Bit no.	Name	Comment (bit order 3,2 or 1,0)					
1 to 0	RTTOTSHK	Real tim	e total shock				
		00 = 0	0 < Number of shocks above 50G <= 50,000				
		01 = 1	50,000 < Number of shocks above 50G <= 100,000				
		10 = 2	100,000 < Number of shocks above 50G <= 200,000				
		11 = 3	Number of shocks above 50G > 200,000 ¹				

¹ This is the contractual limit for all tools.

Table A-10: Definition of PCNTSTCK

Bit no.	Name	Comment (bit order 3,2 or 1,0)					
1 to 0	PCNTSTCK		Percent stuck: Percentage of time that the collar RPM is lower than 5 rpm.				
		00 = 0	percentage of time = 0%				
		01 = 1	0% < percentage of time < 25%				
		10 = 2	25% <= percentage of time < 50%				
		11 = 3	percentage of time >= 50%				

Fast Downlink Timing Sheet:

Below are some snapshots of a few tabs of the Fast Downlink Timings Sheet. One of the recommended data points used for downlink confirmation is DLINK. DLINK is preferred because it also provides the downlink source (rpm/flow), but the STEER data point is also available. Both data points can be decoded on any of the downlink pages of the Fast Downlink Timing Sheet. Several status word data points can also be decoded on the real-time tab of the Fast Downlink Timing Sheet.

	Page 0 Manual (Build and Turn)	Bit Period	Precursor	Command	Ensure this Page is reflect
	Command Action	18	1	28	🚽 in Real-Time RTSTAT
ommand #	Steering Mode 0: Build and Turn				Steering mode otherwi incorrect downlink opera
1-0	Go to Page 0 with MTF neutral setting: TF = 0 degrees, SR = 0%	1-28	Set TF = 216	degrees, SR = 50%	will happen.
1-1	Set TF = 0 degrees, SR = 25%				A CONTRACT OF A CONTRACT
1-2	Set TF = 0 degrees, SR = 50%				
1-3	Set TF = 0 degrees, SR = 75%	Has the PowerD	prive tool been por	wered up for more	
1-4	Set TF = 0 degrees, SR = 100%		before this downli		
1-5	Set TF = 18 degrees, SR = 75%				
1-6	Set TF = 18 degrees, SR = 100%			Tools on the Excel Menu, A	
1-7	Set TF = 36 degrees, SR = 50%			oolpack and the Analysis To	
1-8	Set TF = 36 degrees, SR = 100%	Note: DLNK_b	shows last received dow	mlink which may have origi	nated from another page.
1-9	Set TF = 45 degrees, SR = 25% Set TF = 54 degrees, SR = 75%		Pat	al-Time d-points	
1-10	Set TF = 72 degrees, SR = 75% Set TF = 72 degrees, SR = 50%	PDSTEER (M1		ar-time u-points	
1-12	Set TF = 72 degrees, SR = 30% Set TF = 72 degrees, SR = 100%	PDSTEER (M		DLNK_b	119
1-12	Set TF = 90 degrees, SR = 25%	PUSTEER (GI	IF) 160	Com	mand #: 2-23
1-14	Set TF = 90 degrees, SR = 75%			1000	
1-14	Set TF = 90 degrees, SR = 100%			Col	lar Downlink
1-15	Set TF = 108 degrees, SR = 50%	Down	link Timing	-	
1-17	Set TF = 108 degrees, SR = 30%	At	GO:	c	omments
1-18	Set TF = 126 degrees, SR = 75%	0:00	H	Start of STEADY E	OW before downlink
1-19	Set TF = 135 degrees, SR = 25%	3:00	н	Start of Downlink S	
1-20	Set TF = 144 degrees, SR = 50%	3:09	ii ii	Reduce Flow	equence
1-21	Set TF = 144 degrees, SR = 100%	3:27	H	Increase Flow	
1-22	Set TF = 162 degrees, SR = 75%	3:45	i i	Reduce Flow	
1-23	Set TF = 180 degrees, SR = 25%	4:03	Ĥ	Increase Flow	
1-24	Set TF = 180 degrees, SR = 50%	4:12	Ľ.	Reduce Flow	
1-25	Set TF = 180 degrees, SR = 75%	4:21	н	Increase Flow	
1-26	Set TF = 180 degrees, SR = 100%	4:39	ü	Reduce Flow	
1-27	Set TF = 198 degrees, SR = 75%	4:57	H	Increase Flow	
1-28	Set TF = 216 degrees, SR = 50%	5.06	i.	Reduce Flow	
1-29	Set TF = 216 degrees, SR = 100%	5:15	H	Increase Flow	
1-30	Set TF = 225 degrees, SR = 25%	5:24	L	Reduce Flow	
1-31	Set TF = 234 degrees, SR = 75%	5:33	н	Increase Flow	
2-0	Set TF = 252 degrees, SR = 50%	5:42	L	Reduce Flow	
2-1	Set TF = 252 degrees, SR = 100%	5:51	н	Increase Flow	
2-2	Set TF = 270 degrees, SR = 25%	6:09	L	Reduce Flow	
2-3	Set TF = 270 degrees, SR = 75%	6:18	н	Increase Flow	
2-4	Set TF = 270 degrees, SR = 100%	6:27	L	Reduce Flow	
2-5	Set TF = 288 degrees, SR = 50%	6:36	н	Increase Flow	
2-6	Set TF = 288 degrees, SR = 100%	6:45	L	Reduce Flow	
2-7	Set TF = 306 degrees, SR = 75%	6:54	н	Increase Flow	
2-8	Set TF = 315 degrees, SR = 25%	7:03	н	End of STEADY FL	OW after downlink.
2-9	Set TF = 324 degrees, SR = 50%			Resume	
2-10	Set TF = 324 degrees, SR = 100%				
2-11	Set TF = 342 degrees, SR = 75%				
2-12	Set TF = 342 degrees, SR = 100%				
2-13	Increase SR by 10%	Remember	er:		
2-14	Decrease SR by 10%			T need to be cy	alad to initiate
2-15	Increase TF by 12 degrees		IP DOES NO	i need to be cy	cied to initiate
2-16	Decrease TF by 12 degrees	downlink.			
2-17	Use Gravity Mode				
2-18	Use Magnetic Mode		10 X22 (2000)	5 (52) 2 20 1 3	12 1121
2-19		2) A "quiet	period" with	a steady flow i	s required
2-20				even without o	
2-21		Delote dow	mink starts,	even without t	young the
2-22	Downlink Bit Period: 18 s	pumps.			
2-23	Downlink Bit Period: 36 s				
2-24					The second second second
2-25				hefore downlin	

Decode RTSTAT_b					Ence	ode RTST	AT_b							
Input decimal value 1125				1										
Hexadecimal value 465														
	Binary value	010001100101				Enco	oded decim	al value o	FRTSTAT_b	1398	1			
										Input				
Description	Current State		bit value		Descriptio			-	er bit weight			State		
Manual Mode = 000, PowerV =	and the second se	11	0			= 000, Pow	erV = 001,	11	2048	0	===>			
001, IH = 010, HIA=011	IH mode	10 9	1		IH = 010,	HIA=011		10	1024	1	===>		IH mode	2
ROP Index	ROP1	8	0		ROP Index	(ROP1 = 0	ROP2=1	8	256	1	>	ROP2		
Valve Seized	Ok	Ĩ	Ő	Valve seized = 1				7	128	Ö	===>	Ok		
Possum Saturated	PosSum exceeding normal range	6	1	Possum saturated = 1			6	64		===>	PosSum e	xceeding no	ormal range	
FDL bit period (01=18, 10=36 sec)	Bit Period = 36 sec	5 4	0	FDL bit period (01=18, 10=36 se		10=36 sec)	5	32	1	===>	Bit Period	= N/A sec		
Bxy Low	Ok	3	0	BXY small = 1			3	8	0	===>	Ok			
High Temp	CU Temperature > 140°C	2	1	HI Temp >140degC = 1			2	4	1	===>		rature > 140)°C	
ToolFace Mode	GTF	1	0		ToolFace Mode: GTF = 0, MTF = Stickslip amp=3 or frg=3 or both=			1	2	1	===>	MTF		
Stick-Slip	Stick-Slip above threshold	0	1	1	Stickslip a	mp=3 or frq	=3 or both=2	0	1	0	222>	Ok		
RTSTAT2 (Extended dpoint)	9		2223	Default Values (non-scaled)						M		Good/Expected		
The tool is detecting a divergence between single & all		1	D-Point		No Comms between No Co				p seed *3 Short-Hop		p Timeout	Values (decimal)		D-Point
axis azimu			Name	Hex	Decimal	receiver Hex	and CU *2 Decimal	Hex	Decimal	Hex	4 Decimal	Non- scaled	Scaled	Size (bits)
akis azimu	th values		RTSTAT b	FFF	4095	EFE	3838	DFD	3581	CFC	3324	scaleu	Julieu	12
			AzimQ_b	F	15	E	14	D	13	C	12	0 - 14	300 - 650	4
RTSTAT4 (Extended dpoint)			InclQ_b	F	15	E	14	D	13	C	12	0 - 10	0 - 100	4
DZM is E			Bt_b	7FF	2047	6FE	1790	5FD	1533	4FC	1276	0 - 1800	0 - 180.0	11
PROPEFF_b sho Unless POSSUM b maxes		-1	No Comms	between	receiver an	d MWD is t	he value set	by the MW	D tool when	it has no co	mmunicatio	n with (no n	eply from) th	e PD receive
AZIMQ_b (Standard dpoint) Lower Torquer mi	10 nimum RPM = 550		Note: - Refer to th	Timeout is e PDX6 Op	the value se	t by the rec nual, Real-Ti	eiver board i me Data seo	f no short h ction, for a	comprehensi	we been rec	ceived from t	he CU for 1	1 minutes.	
					ROP index re									
LTRPM = (unscaled AzimQ)*25 + 300			BUORN S	- 30 KA	N 51059		25 N 25 NG	0.0000						
AzimQ decodes minimum Lower Torquer RPM since last survey frame. The calculation above requires raw, unscaled AzimQ as seen on the HSPM frame decoding display! The scaled AzimQ to be divided by 1.6			The following should be noted for PDX6 DHS version X.XX: - Continuous azimuth (Azim b) and continuous inclination (Incl_b) are no longer affected by low steering proportion settings. - Some real time d-points (AzimQ_b, InclQ_b, Bt_b) have been redefined/borrowed, and are now being used to transmit values that are different to their original function. - The first Short-Hop message is sent at start of the first drilling survey, approximately 30 seconds earlier than older DHS versions. - THH b, TF b and INCLQ b will have zero values in the first Short-Hop survey frame after a power-up.											
BT_b (Standard dpoint)	2								t-Hop survey			a.		
IH Target Inclina	ation = 0.2 Deg.	1			64	MS 1032	02270	1						
-			Schlu	Imper	ger Rev	vision: 01	33373							
In order to compute target inclin: displayed on the HSPM demodu above. The computed value is the by the tool (IH M	Itation panel for BT_b in the box actual target inclination calculated							1						
	<u></u>		IMPORTA	NT:										
INCLQ_b (Standard dpoint)	2		If any com	puted va	lues are no	ot showin	g correctly	- go to 1	ools on th	e Excel N	lenu, Add-	ins, and t	hen make	sure you
Effective Steer P	roportion = 20 %	1	have sele	cted the	Analysis To	oolpack a	nd the Ana	ilysis Too	lpack VBA	boxes.				
Real-Time P	age0 - Manual Page1 -	Vertical	Page2 -	IH P	age3 - Hl	AIG	3							
The second secon	ages manual ruger.	- or creat	, ager -		-geo (m	10								